A modular system for generating linguistic expressions from underlying clause structures
Fabian Steeg!, Christoph Benden! & Paul O. Samuelsdorff?

Department of Linguistics?, University of Cologne, Germany

1Sprachliche Informationsverarbeitung, {fsteeg | cbenden}@spinfo.uni-koeln.de, http:/ / www.spinfo.uni-koeln.de

2Allgemeine Sprachwissenschaft, paul-o.samuelsdorff@uni-koeln.de, http:/ / www.uni-koeln.de/ phil-fak /ifl / asw 3http:/ / www.uni-koeln.de/ifl

1. Motivation Different Implementations of the Input Module
The idea of creating a computational implementation of Functional Grammar (FG) mechanisms, to “build a model of the natural These experimental implementations all use Java. In general any implementation in
language user” (Dik 1997:1) is central to the theory of FG and a valuable evaluation tool for linguistic theories in general, since | any language could act as the Input Module, if it fomulates (or assists in formulating,
“linguistics may learn from being applied” (Bakker 1994:4). Therefore our system could be used to evaluate and improve the |: as here) the input UCS for the Processing Module.
theory of FG with respect to theoretical issues in language generation. The system uses an underlying clause structure (UCS) |: —
representation based on Dik (1997) and can therefore be used to experiment with representational issues of FG. The expression | : o TEREN, J —J \—3
component is based on a revised version of the implementation described in Samuelsdorff (1989). : (P e: give" IV]: (A Yarmer' NDAgSubj (imx: ‘duckling' INI: 'soft [ADG0Ob] (drmx woman' [NJ: Young' ADRec)

: The farmer has given soft ducklings to the young women

System Architecture

verbose

Graphical user interface using Java Swing (here on Windows XP)

Input

C Module ®606 Terminal — swipl — 100x6
reate Displa de.uni_koeln.spinfo.fg 518 $ java -jar foram-console.jar 5
Input play UCS > (PF e: 'kill' [V]: (dix: 'farmer'[N])AgSubj (imx: 'duckling' [N]: 'soft’ [A])GoObi) N

Result The farmer has killed soft ducklings
UCS >> (Prog e: 'write' [V]: (dix: ‘mon’ [N])AgSubj (ilx: 'letter' [N])GoObj (dix: 'woman' [N])Rec) O
The man_is writing a letter to the wonan

ucs == |

ucs

Java console application (here on Mac OS X)

dix‘man'[N]:happy'[A] |[=-======-=-1 [T The happy man 60606 FGRAM JSP o

4% @ hitp:/flocalhost: 8080/ch ¥ [«

Processing
Module
Process Process
Input Result

Sample: (Prog e: "write' [V]: (ilx: ‘man’ [N]: 'youag’ [A])AgSubj (imx: ‘letter [H]: shont [A]}GoODj (d1x: “women' [N])Rec) frm dome
\(e: 'love' [V]: (d1x: 'man' [N])AgSubj (d1x: 'woman' [N])GoObj) []

The man loves the woman v
«€ BJ >

Java,
ANTLR

Prolog representation of | Prolog representation of

the input UCS the result :
Grammar : 3. Modularity
Module :

Generate
Ling.

Process
Prolog
ucs

The system consists of individual, exchangeable modules for creating an underlying clause
structure (UCS), processing that input and generating a linguistic expression from the input
UCS. The system architecture can therefore be characterized as a Model-View-Controller
(MVCQ) or three-tier architecture. Such a modular approach has two main advantages: First,
modules can be exchanged, for instance the input module can be a web-based user interface
and the actual processing can happen on a server. Second, by using a defined input UCS
format, our system could be combined with other FG-based natural language processing
(NLP) components which could formulate the input UCS for our system or use the Java or
the Prolog representation of the parsed input UCS.

Access
Lexicon

Prolog UCS

2. Well-defined, FG-conforming notation

In the original implementation the underlying structure is built up step by step via a user dialog, during which the expression

to be generated is specified (see Samuelsdorff 1989:38ff.). To make the implementation work as a module in the described 7 PROLOG REPRESENTATION OF THE INPUT bes

system, this user dialog is replaced by an immediate processing of the entire underlying clause structure (UCS) representing 233::3 ?;
the linguistic expression to be generated. The user dialog is therefore replaced by the input UCS, which is created in the input | : nodeoa D
module and converted into a Prolog representation by the processing module. D, TCaTRY,) (Past Pf)
prop(clause. type, mainclause). (dmx:: old' [A])AgSubj
T (imx:'duckling'[N]:'soft'[A])GoObj
Parser Overview brop(1i tenserast) (dmx: 'woman' [N]:'young' [A])Rec
prop(x1, perfective, true))

prop(x1. progressive, false)
prop(x1, mode, ind). ‘

Input UCS Parser Module

prop(x1, voice, active)
prop(x1. subnodes. [xz X3, x41).
prop(x1, lex, 'give’

<< uses>> prop(x1l, nav, [V]). Node x2:Term
Processing > Generate prop(x1, det, def). lexeme = farmer
S prop(x2, type, term). modif = old
Module Parser prop(x2. role, agent).
prop(x2, relation, subject).
y y y prop(x2, proper, false) _
H H H Prop(x2, pragmatic, nuli). Node x1:Predicate Node x3:Term
t i H prop(x2. num. plural). lexeme = give lexeme = duckiing
' | | prop(x2. modifs, [o1¢]) tonse = past modit = soft
| prop(x2, lex, 'farmer').
1 prop(x2. nav. [N]). \
H prop(x2, det, def)
! ANTLR Java API Node x4:Term
H prop(x3, type, term).
| prop(x3. role, goal) lexeme = woman
H
:

prop(x3. relation, object) modif = young
prop(x3. proper, false).

prop(x3, pragmatic, null)

prop(x3. num, plural).
prop(x3. modifs. [soft]) ‘
prop(x3. lex, 'duckling')

prop(x3. nav. [NI).

prop(x3. det, indef)

ANTLR GRAMMAR DEFINITION
Boool)

dlx:" or "Past Pf e:"
((d:DEF (n:NUMBER)?) | ((tense:TENSE)? (aspect:ASPECT)?))? t:LAYER RESTRIKTOR

The old farmers had given soft ducklings to the young women

prop(x4, type, term).
prop(x4. role, recipient).
prop(x4, relation, restarg).
prop(xa. proper, false)
prop(x4. pragmatic, null).
prop(x4. num, plural).
prop(x4, modifs, [youngl)
prop(xa, lex, 'woman')
prop(x4, nav, [N]).

prop(xa, det, def)

man [N]
(WO:WORD pO:WORD_CLASS (RESTRIKTOR)?)?

(Past e:
(ool (d1lx:'man' [N]:
(Past Pf e:'give'[V]
LAYER
f // predicate (dlx: 'mary' [N])Ag
I term (dmx: 'book' [N]:'old"'[A])Go
I predication (x:'man’ [N])RecSubj
| '% proposition)

g)
NUMBER . (d1x:'john'[N])© : o
) : 4. Programming Languages

plural 'many' B

{...1 An example for a nested UCS that is parsable by the i | The System uses Java, Prolog and the ANTLR Grammar description language. The reason for
ANTLR-generated parser (would correspondent to the using Java for the user interface and processing of the underlying clause structure (UCS),
expression John was the man that had given the old book to ANTLR for the Grammar definition and Prolog for the expression rules and the lexicon stems
Mary). from the idea of using implementation languages well suited for a particular task. Java is a
widespread multi-purpose programming language with abundant supply of libraries,
ANTLR a specialized grammar description language and parser generator and Prolog offers

]ava API i | convenient notation and processing mechanisms, is familiar to many linguists and has a
oG i | particular strong standing as an implementation language for FG (e.g. Samuelsdorff 1989,
String ucs = "(e:'love' [VI: (x: 'man’ [ND)AgSubj (dme: ‘woman' [NI)GoOb})": ;| Dik 1992).
UcsParser parser = new UcsParser (new UcsLexer (new Slrngeader(u:S))) i

Parse the ession, the Predicate contains the entir
Predicate. p = parser. input():

Full usage Participation
1"DUIPV°CESSW processor = new InputProcessor(configFilelocation); . Infrastructure for participation (in particular a Subversion repository, a website and a forum) is available at
String u J(e: tove! IVI: i iman' [N])AgSubj (dmx: woman IN1)Go0bj)" Prolog Lexicon i orp pation (in p S sion repository, orum) is
D s e e Sourceforge:
U3 GBI & PrIBEer PRI, ST T
Verb(believe, state, [regular, regular].[[experiencer.human.X1], [goal,proposition.x2]].s http://fgram.sourceforge.net

verb(give,action, [gave,given], [[agent.animate,X1], [goal,any.X2] . [recipient,animate, 3]
B

References

AKKER, Dik. 1994 Formal and Computational Aspects of Functional Grammar and Language Typology:
Amsterdam: [FOTT.

Dik, Simon C. 1992 Functional Grammar in Prolog; an integrated implementation for English, French and Dutch.

Berlin, New York: Mouton de Gruyter.

DIk, Simon C. 1997. The Theory of Functional Grammar, Part 1: The Structure of the Clause. Kees HENGEVELD (ed.)
2nd rev. ed. Berlin, New York: Mouton de Gruyter.

SAMUELSDORFF, Paul O. 1989. Simulation of a Functional Grammar in Prolog. In: CONNOLLY, John H. & Simon C.

Functional Grammar and the Computer 29-44. Utrecht, I’mvldenc Foris Publications.

noun (axe, instrument, [regular,neuter], [[argument,instrument,X]],5at)
noun (book, readable, [regular,neuter] , [[argument,readable,X]],5at).
[...]

adj(big,size, [[1.big], [[argument,any, X]1,5at).
au,mw quality,[[].eager].[[first_argument,animate,X1], [second_argument,infinitive,x2]].5at).

% GRAMHATICON

be([[was,past,sing], [were,past,plural], [is,present,sing],[are,present,plural]ll).

have ([[had,past,N], [has,present,sing], [have, present,plural]])

do([[d1d.past], (does present 3ing] . [do, present plurall])

determiner ([["the" def,N,G],["a",indef,sing.G].["every", total,sing.G].[...]

pronouns ([[he,pers. masc,sing,subj], [him,pers, masc,sing,ob], [she,pers,fem sing,subjl, [...]

12th ICFG 2006 | Universidade Estadual Paulista, Sdo José do Rio Preto, Brazil

